Arena 2036, Mobilität, Uni Stuttgart

Im "Active Research Environment for the Next Generation of Automobiles" wird an der Mobilität von übermorgen geforscht. - Bild: Arena 2036

Seinen Respekt vor Beinen muss der kleine "Banana Joe" noch ablegen. Nahezu lautlos und ganz von allein schiebt das gelbe Gefährt Materialkisten durch die Gegend. Aber immer wenn jemand im Weg ist, bleibt es stehen und blinkt so lange vor sich hin, bis die Bahn wieder frei ist.

Banana Joe, Uni Stuttgart, Contrax
"Banana Joe" von Contrax schiebt in der "Arena 2036" an der Uni Stuttgart Materialkisten. - Bild: Arena 2036

Dass "Banana Joe" überhaupt stehenbleibt, ist schon mal gut. Irgendwann soll er aber auch entscheiden können, ob er tatsächlich warten oder doch lieber gleich um das Hindernis herumfahren soll. Er wird das lernen, versprechen seine Entwickler, die ihm auch den Namen gegeben haben, der vorn auf einem kleinen Klebeschild steht. Und bis es so weit ist, lernen sie auch von ihm, von seinem Verhalten, seinen Reaktionen.

Lernen ist ohnehin das Stichwort in der "Arena 2036" - voneinander lernen und miteinander ganz neue Ideen ausprobieren. «Die Firmen können hier wieder mutiger werden», sagt Peter Fröschle, der die Einrichtung leitet, die ausgeschrieben "Active Research Environment for the Next Generation of Automobiles" heißt.

In einer Mischung aus Messe- und Turnhalle gleich neben der Stuttgarter Universität arbeiten in der "Arena 2036" Entwickler und Ingenieure großer Unternehmen gemeinsam mit Start-up-Tüftlern und Forschern diverser Institute an der Fabrik der Zukunft - insbesondere für die Automobilindustrie, die 2036 ihr 150-jähriges Bestehen feiern kann. Fröschle nennt es eine "Forschungsplattform". Aus sieben Gründungsmitgliedern sind schon mehr als 30 geworden. Im Februar startet Phase 2, das ist quasi die offizielle Eröffnung.

Bosch und Daimler in der "Arena 2036"

Gleich vorne in der Halle hat "Arena"-Gründungsmitglied Bosch sich ausgebreitet - direkt neben den Autobauern von Daimler. Ein Roboterarm schwenkt hin und her, Metallteile und Computerchips werden zusammengeschraubt, mittendrin fährt "Banana Joe" umher und bringt Nachschub in blauen Kisten. Bis zur kleinsten Schraube ist alles vernetzt, digital erfasst und im Raum lokalisiert.

Auf einem riesigen Bildschirm sind in Echtzeit die "digitalen Zwillinge" der Maschinen bei der Arbeit zu sehen. Schraubt einer der Entwickler eine zu kurze Schraube ins falsche Loch und hält dabei den Akkuschrauber schief, merkt das System das sofort und greift ein.

"Das ist die Idee: Fehler entdecken, bevor sie entstehen", erklärt Stefan Aßmann, der bei Bosch den Bereich Vernetzte Industrie leitet. Nicht erst das fertige Produkt soll auf Macken untersucht werden. Und auch der nicht mehr ganz rund laufende Akkuschrauber soll schon repariert werden können, bevor er endgültig den Geist aufgibt. Das soll Stillstand in der Produktion verhindern.

Die Unternehmen erhoffen sich aber noch einen weiteren Effekt. "Die Fabrik wird flexibler", sagt Aßmann und demonstriert es an einer komplett vernetzten Werkbank. Schritt-für-Schritt-Anleitungen auf einem Bildschirm zeigen, welches Teil gerade produziert werden soll.

Kleine Lämpchen markieren die benötigten Einzelteile in ihren Kisten. Ein Lichtpunkt zeigt die Stelle, an die die Schraube gehört. Nur dort, wo geschraubt werden soll, schraubt der Schrauber auch. An anderen Stellen verweigert er den Dienst. Fehler machen - kaum möglich, selbst wenn man das Teil zum ersten Mal sieht und ständig andere zusammenbaut.

  • Mensch-Roboter-Interaktion Kollaboration mit dem Großroboter: In einem offenen Arbeitsraum können Werker sicher mit einem Schwerlastroboter von Kuka zusammenarbeiten. Hierdurch können das Fachwissen und die Geschicklichkeit des Menschen mit der Kraft und Ausdauer des Roboters kombiniert werden. Die Resultate sind ein Arbeitsplatz mit besserer Ergonomie, höherer Produktivität und Qualität. Möglich macht dies das sicherheitszertifizierte Kamerasystem Safetyeye der Firma Pilz, das von oben über den Arbeitsraum des Roboters wacht. Das System erkennt, wenn sich Menschen dem Arbeitsraum des Roboters nähern. In diesem Fall reduziert der Roboter seine Geschwindigkeit oder stoppt, um die Sicherheit des Menschen zu gewährleisten. Des Weiteren kann der Roboter in einen Handführmodus geschaltet werden. - Bild: Fraunhofer

    Mensch-Roboter-Interaktion - Kollaboration mit dem Großroboter: In einem offenen Arbeitsraum können Werker sicher mit einem Schwerlastroboter von Kuka zusammenarbeiten. Hierdurch können das Fachwissen und die Geschicklichkeit des Menschen mit der Kraft und Ausdauer des Roboters kombiniert werden. Die Resultate sind ein Arbeitsplatz mit besserer Ergonomie, höherer Produktivität und Qualität. Möglich macht dies das sicherheitszertifizierte Kamerasystem Safetyeye der Firma Pilz, das von oben über den Arbeitsraum des Roboters wacht. Das System erkennt, wenn sich Menschen dem Arbeitsraum des Roboters nähern. In diesem Fall reduziert der Roboter seine Geschwindigkeit oder stoppt, um die Sicherheit des Menschen zu gewährleisten. Des Weiteren kann der Roboter in einen Handführmodus geschaltet werden. - Bild: Fraunhofer

  • Mensch-Roboter-Interaktion Einfache Roboterprogrammierung: Mit der vom Fraunhofer IPA entwickelten Lösung drag&bot lassen sich Roboterprogramme einfach parametrieren und konfigurieren. Im Future Work Lab kann dies an einem sensitiven Leichtbauroboter geübt werden. Die Software baut aus sogenannten ‚Building Blocks‘, in denen bestimmte Fähigkeiten beziehungsweise Roboterskills wie beispielsweise eine Bewegung oder das Schließen eines Greifers hinterlegt sind Ablaufprogramme auf. An einem Touchscreen lassen sich diese Blöcke einfach kombinieren, sodass ein Roboterprogramm entsteht. - Bild: Fraunhofer

    Mensch-Roboter-Interaktion - Einfache Roboterprogrammierung: Mit der vom Fraunhofer IPA entwickelten Lösung drag&bot lassen sich Roboterprogramme einfach parametrieren und konfigurieren. Im Future Work Lab kann dies an einem sensitiven Leichtbauroboter geübt werden. Die Software baut aus sogenannten ‚Building Blocks‘, in denen bestimmte Fähigkeiten beziehungsweise Roboterskills wie beispielsweise eine Bewegung oder das Schließen eines Greifers hinterlegt sind Ablaufprogramme auf. An einem Touchscreen lassen sich diese Blöcke einfach kombinieren, sodass ein Roboterprogramm entsteht. - Bild: Fraunhofer

  • Assistierte Montage Personalisierter Arbeitsplatz: Das Future Work Lab präsentiert eine Montagestation mit dem modular aufgebauten und flexibel anpassbaren Montageassistenzsystem Active-Assist von Bosch Rexroth. Diese aus Hard- und Software bestehende Lösung verbindet einen realen Montagearbeitsplatz mit der virtuellen Welt der Informationstechnologie. Anwender können je nach Aufgabenstellung eine Vielzahl verschiedener digitaler Assistenten miteinander kombinieren. Im Future Work Lab identifiziert Active-Assist das jeweilige Werkstück und ruft den zugehörigen Arbeitsplan ab. Danach führen digitale Assistenten die Mitarbeiter durch die Montage und projizieren per Beamer die Arbeitsanweisungen auf einen Arbeitstisch. Leuchtdioden an Bauteilbehältern, sogenannte ‚Pick-to-Light-‚ und ‚Pick-to-Beamer-Module‘, markieren eindeutig, welche Bauteile der Mitarbeiter als nächstes greifen soll. Kameras und Ultraschallsensoren überprüfen die Arbeitsschritte und helfen den Mitarbeitern, bei Fehlern Korrekturmaßnahmen einleiten zu können. Ein integrierter Funkakkuschrauber von Bosch Rexroth überwacht zusätzlich in Echtzeit, ob er in der richtigen Position ist, und vermeidet zu festes oder zu lockeres Schrauben.

    Assistierte Montage - Personalisierter Arbeitsplatz: Das Future Work Lab präsentiert eine Montagestation mit dem modular aufgebauten und flexibel anpassbaren Montageassistenzsystem Active-Assist von Bosch Rexroth. Diese aus Hard- und Software bestehende Lösung verbindet einen realen Montagearbeitsplatz mit der virtuellen Welt der Informationstechnologie. Anwender können je nach Aufgabenstellung eine Vielzahl verschiedener digitaler Assistenten miteinander kombinieren. Im Future Work Lab identifiziert Active-Assist das jeweilige Werkstück und ruft den zugehörigen Arbeitsplan ab. Danach führen digitale Assistenten die Mitarbeiter durch die Montage und projizieren per Beamer die Arbeitsanweisungen auf einen Arbeitstisch. Leuchtdioden an Bauteilbehältern, sogenannte ‚Pick-to-Light-‚ und ‚Pick-to-Beamer-Module‘, markieren eindeutig, welche Bauteile der Mitarbeiter als nächstes greifen soll. Kameras und Ultraschallsensoren überprüfen die Arbeitsschritte und helfen den Mitarbeitern, bei Fehlern Korrekturmaßnahmen einleiten zu können. Ein integrierter Funkakkuschrauber von Bosch Rexroth überwacht zusätzlich in Echtzeit, ob er in der richtigen Position ist, und vermeidet zu festes oder zu lockeres Schrauben. -Bild: Fraunhofer

  • Assistierte Montage Mobiler Arbeitsplatz: Von der Firma Elabo präsentiert das Future Work Lab ein wandlungsfähiges Systemkonzept und Montagelayout, was sich für die Kompensation volatilitätsbasierter Kapazitätsschwankungen eignet. Konkret handelt es sich um Arbeitssysteme für die manuelle Montage, die auf Basis von Portalen und flexibel kombinierbaren Tischen realisiert wurde. Das System ermöglicht zudem die Individualisierung des Arbeitsbereichs durch Beleuchtungssituation, Tischhöhe, Informationsbereitstellung für den Mitarbeiter und die jeweilige Arbeitssituation. Arbeitstische, Werkzeuge und Materialien werden flexibel per mobilem Roboter zum Mitarbeiter transportiert. Der mobile Roboter kann sowohl frei durch den Raum navigieren und Hindernissen ausweichen als auch per Mobilgerät durch den Mitarbeiter gesteuert werden. -Bild: Fraunhofer

    Assistierte Montage - Mobiler Arbeitsplatz: Von der Firma Elabo präsentiert das Future Work Lab ein wandlungsfähiges Systemkonzept und Montagelayout, was sich für die Kompensation volatilitätsbasierter Kapazitätsschwankungen eignet. Konkret handelt es sich um Arbeitssysteme für die manuelle Montage, die auf Basis von Portalen und flexibel kombinierbaren Tischen realisiert wurde. Das System ermöglicht zudem die Individualisierung des Arbeitsbereichs durch Beleuchtungssituation, Tischhöhe, Informationsbereitstellung für den Mitarbeiter und die jeweilige Arbeitssituation. Arbeitstische, Werkzeuge und Materialien werden flexibel per mobilem Roboter zum Mitarbeiter transportiert. Der mobile Roboter kann sowohl frei durch den Raum navigieren und Hindernissen ausweichen als auch per Mobilgerät durch den Mitarbeiter gesteuert werden. -Bild: Fraunhofer

  • Assistierte Montage - Qualifizierung mit Lernvideos: Integriert ins Elabo Arbeitssystem wurde ein Screen, auf dem Videofilme eingeblendet werden, die den Anlernprozess neuer Mitarbeiter oder die Ausführung diffiziler Arbeiten unterstützen. Das System der Firma Memex passt sich dabei den Fähigkeiten des Werkers an, zeigt zu Beginn lange Videos und blendet später, wenn der Werker mehr Erfahrung hat und daher weniger Informationen braucht, nur noch Bilder oder kurze Mitteilungen ein. Ausgedruckte, schriftliche Arbeitsanweisungen sind so nicht mehr notwendig

    Assistierte Montage - Qualifizierung mit Lernvideos: Integriert ins Elabo Arbeitssystem wurde ein Screen, auf dem Videofilme eingeblendet werden, die den Anlernprozess neuer Mitarbeiter oder die Ausführung diffiziler Arbeiten unterstützen. Das System der Firma Memex passt sich dabei den Fähigkeiten des Werkers an, zeigt zu Beginn lange Videos und blendet später, wenn der Werker mehr Erfahrung hat und daher weniger Informationen braucht, nur noch Bilder oder kurze Mitteilungen ein. Ausgedruckte, schriftliche Arbeitsanweisungen sind so nicht mehr notwendig. - Bild: Fraunhofer

  • Intelligente Sensorik  Mobile Mehrmaschinenbedienung: Das Start-up Aucobo zeigt hier, wie moderne Anlagen oder Bestandslagen mit dem Aucobo-System verbunden werden können. Dadurch lassen sich zum Beispiel Fehlermeldungen oder der Anlagenstatus über eine Smartwatch an den Instandhalter kommunizieren. Dazu generiert Aucobo auf Basis der Daten, die bestimmte Sensoren an den Maschinen liefern, Kontext und leitet daraus Handlungen wie beispielsweise Benachrichtigungen ab. Diese Nachrichten werden anschließend an die Smartwatch des Instandhalters versendet, der schnell und gezielt eingreifen kann. -Bild: Fraunhofer

    Intelligente Sensorik - Mobile Mehrmaschinenbedienung: Das Start-up Aucobo zeigt hier, wie moderne Anlagen oder Bestandslagen mit dem Aucobo-System verbunden werden können. Dadurch lassen sich zum Beispiel Fehlermeldungen oder der Anlagenstatus über eine Smartwatch an den Instandhalter kommunizieren. Dazu generiert Aucobo auf Basis der Daten, die bestimmte Sensoren an den Maschinen liefern, Kontext und leitet daraus Handlungen wie beispielsweise Benachrichtigungen ab. Diese Nachrichten werden anschließend an die Smartwatch des Instandhalters versendet, der schnell und gezielt eingreifen kann. -Bild: Fraunhofer

  • Intelligente Sensorik Retrofitting mit Sense&Act: Das Fraunhofer IPA bietet den Service, beliebig alte Bestandsanlagen über eine Cloud zu vernetzen. Im Future Work Lab wird das Ganze anhand einer alten Fräsmaschine (Baujahr 1957) gezeigt, die mit Sensoren ausgestattet ist und dadurch Signale an die Cloud schicken kann. In der Cloud kann dann zum Beispiel eine E-Mail mit dem Anlagenstatus erzeugt werden. Als IT-Plattform wird für dieses Projekt ‚Virtual Fort Knox‘ vom Fraunhofer IPA genutzt. - Bild: Fraunhofer

    Intelligente Sensorik - Retrofitting mit Sense&Act: Das Fraunhofer IPA bietet den Service, beliebig alte Bestandsanlagen über eine Cloud zu vernetzen. Im Future Work Lab wird das Ganze anhand einer alten Fräsmaschine (Baujahr 1957) gezeigt, die mit Sensoren ausgestattet ist und dadurch Signale an die Cloud schicken kann. In der Cloud kann dann zum Beispiel eine E-Mail mit dem Anlagenstatus erzeugt werden. Als IT-Plattform wird für dieses Projekt ‚Virtual Fort Knox‘ vom Fraunhofer IPA genutzt. - Bild: Fraunhofer

  • Sichere Produktionsarbeit  Aktive Unfallprävention: Gezeigt wird eine Bandsäge, die Bescheid weiß, ob sich ein Werker in einem bestimmten, gefährlichen Arbeitsraum aufhält. Radar- oder Funksensoren erfassen dazu die Bewegungen des Werkers. Fällt beispielsweise eine Person um oder tritt in den gefährlichen Bereich der Bandsäge ein, stoppt die Säge sofort. Das Gefahren-Erkennungssystem ist dabei mit dem Not-Aus-Mechanismus der Maschine verbunden. So lassen sich Arbeitsunfälle zuverlässig verhindern. - Bild: Fraunhofer

    Sichere Produktionsarbeit - Aktive Unfallprävention: Gezeigt wird eine Bandsäge, die Bescheid weiß, ob sich ein Werker in einem bestimmten, gefährlichen Arbeitsraum aufhält. Radar- oder Funksensoren erfassen dazu die Bewegungen des Werkers. Fällt beispielsweise eine Person um oder tritt in den gefährlichen Bereich der Bandsäge ein, stoppt die Säge sofort. Das Gefahren-Erkennungssystem ist dabei mit dem Not-Aus-Mechanismus der Maschine verbunden. So lassen sich Arbeitsunfälle zuverlässig verhindern. - Bild: Fraunhofer

  • Sichere Produktionsarbeit Szenenanalyse zur Unfallerkennung: Das Fraunhofer IPA hat ein Sensorsystem entwickelt, mit dem Notfälle in Räumen erkannt werden können. Es eignet sich beispielsweise zur Überwachung von Lagerräumen oder Silos in der Lebensmittelindustrie. Die Sensorbox erkennt, wenn Personen länger als ein paar Sekunden am Boden liegen und startet in diesem Fall ein eskalierbares Alarmsystem. Die Sensorbox sendet keine personenbezogenen Daten, sondern meldet nur, ob ein Notfall vorliegt. - Bild: Fraunhofer

    Sichere Produktionsarbeit - Szenenanalyse zur Unfallerkennung: Das Fraunhofer IPA hat ein Sensorsystem entwickelt, mit dem Notfälle in Räumen erkannt werden können. Es eignet sich beispielsweise zur Überwachung von Lagerräumen oder Silos in der Lebensmittelindustrie. Die Sensorbox erkennt, wenn Personen länger als ein paar Sekunden am Boden liegen und startet in diesem Fall ein eskalierbares Alarmsystem. Die Sensorbox sendet keine personenbezogenen Daten, sondern meldet nur, ob ein Notfall vorliegt. - Bild: Fraunhofer

  • Optimierte Ergonomie Live-Visualisierung von Belastung: Mit diesem Lösungsansatz kann haltungsbedingte Belastung sichtbar gemacht werden, um ein besseres und eindrücklicheres Verständnis von nicht ergonomischen Haltungen und Bewegungen zu vermitteln. Die betroffenen Gelenke werden zu Analyse- und Schulungszwecken in Echtzeit direkt mit einem farblichen Overlay auf den betroffenen Gelenken hervorgehoben.  - Bild: Fraunhofer

    Optimierte Ergonomie - Live-Visualisierung von Belastung: Mit diesem Lösungsansatz kann haltungsbedingte Belastung sichtbar gemacht werden, um ein besseres und eindrücklicheres Verständnis von nicht ergonomischen Haltungen und Bewegungen zu vermitteln. Die betroffenen Gelenke werden zu Analyse- und Schulungszwecken in Echtzeit direkt mit einem farblichen Overlay auf den betroffenen Gelenken hervorgehoben. - Bild: Fraunhofer

  • Stuttgarter Exo-Jacket: Sind Tätigkeiten an sich unergonomisch, kann ein Exoskelett Abhilfe schaffen. Mit dem ‚Stuttgart Exo Jacket‘ haben Wissenschaftler des Fraunhofer IPA ein Oberkörperexoskelett entwickelt, das den Träger mit zusätzlicher Kraft unterstützt, dabei aber auch schnelle und intuitive Bewegungen zulässt. Um das Gewicht des Exoskeletts möglichst gering zu halten, setzen die Wissenschaftler leichte Motoren mit hohen Drehzahlen ein. Das Antriebsmodul ist direkt an Schulter und Ellenbogen angebracht und kann daher direkte Kraftunterstützung liefern. Eine mechanische Freilaufkupplung gewährleistet die Sicherheit des Trägers selbst bei stillstehendem Antrieb. Da der Motor nur dann arbeitet, wenn er tatsächlich benötigt wird, sinkt zusätzlich der Energieverbrauch. An der Schulterpartie ist eine Gelenkkette mit fünf Rotationsachsen angebracht, die der Schultergelenkgruppe in jede Position folgen. Auf diese Weise werden komplexe Bewegungen in drei Richtungen ermöglicht, nach oben, hinten und innen. Sogar Überkopfmontagen lassen sich realisieren. Erprobt wird das Exoskelett derzeit in der Kabelmontage bei einem Bushersteller. - Bild: Fraunhofer

    Optimierte Ergonomie - Stuttgarter Exo-Jacket: Sind Tätigkeiten an sich unergonomisch, kann ein Exoskelett Abhilfe schaffen. Mit dem ‚Stuttgart Exo Jacket‘ haben Wissenschaftler des Fraunhofer IPA ein Oberkörperexoskelett entwickelt, das den Träger mit zusätzlicher Kraft unterstützt, dabei aber auch schnelle und intuitive Bewegungen zulässt. Um das Gewicht des Exoskeletts möglichst gering zu halten, setzen die Wissenschaftler leichte Motoren mit hohen Drehzahlen ein. Das Antriebsmodul ist direkt an Schulter und Ellenbogen angebracht und kann daher direkte Kraftunterstützung liefern. Eine mechanische Freilaufkupplung gewährleistet die Sicherheit des Trägers selbst bei stillstehendem Antrieb. Da der Motor nur dann arbeitet, wenn er tatsächlich benötigt wird, sinkt zusätzlich der Energieverbrauch. An der Schulterpartie ist eine Gelenkkette mit fünf Rotationsachsen angebracht, die der Schultergelenkgruppe in jede Position folgen. Auf diese Weise werden komplexe Bewegungen in drei Richtungen ermöglicht, nach oben, hinten und innen. Sogar Überkopfmontagen lassen sich realisieren. Erprobt wird das Exoskelett derzeit in der Kabelmontage bei einem Bushersteller. - Bild: Fraunhofer

  • Digital Industrial Engineering: Augmented-Reality-Brillen wie die Microsoft HoloLens werden die Industriearbeit verändern. Die Technologie bietet die Möglichkeit, beliebige virtuelle Inhalte für den Menschen sichtbar frei im Raum zu positionieren. Vorgestellt wird ein Szenario aus der Fertigungsplanung. Shopfloor-Mitarbeiter werden dazu befähigt, bei der Fertigungsplanung zu unterstützen oder diese gar zu übernehmen. Die realitätsgetreue Darstellung von umzuplanenden Anlagen vor Ort verringert das für die Aufgabe benötigte Abstraktionsvermögen, da die Planung nicht mehr nur über Skizzen am Bürotisch durchgeführt wird. Diese aktive Partizipation der Mitarbeiter am Veränderungsprozess steigert sowohl die Akzeptanz der Maßnahme als auch deren Kommunikation. Im Beispiel werden ein virtuelles Modell eines Roboterarms in einer bestehenden Fertigung positioniert und die geplanten Bewegungen des Arms durchgespielt. Mitarbeiter aus der Entwicklung, Produktion und Fertigung diskutieren zusammen die für alle sichtbare virtuelle Planung. Die Interaktion mit dem Modell geschieht dabei völlig natürlich über Blickrichtung, Gesten- und Sprachsteuerung. - Bild: Fraunhofer

    Virtual Engineering - Digital Industrial Engineering: Augmented-Reality-Brillen wie die Microsoft HoloLens werden die Industriearbeit verändern. Die Technologie bietet die Möglichkeit, beliebige virtuelle Inhalte für den Menschen sichtbar frei im Raum zu positionieren. Vorgestellt wird ein Szenario aus der Fertigungsplanung. Shopfloor-Mitarbeiter werden dazu befähigt, bei der Fertigungsplanung zu unterstützen oder diese gar zu übernehmen. Die realitätsgetreue Darstellung von umzuplanenden Anlagen vor Ort verringert das für die Aufgabe benötigte Abstraktionsvermögen, da die Planung nicht mehr nur über Skizzen am Bürotisch durchgeführt wird. Diese aktive Partizipation der Mitarbeiter am Veränderungsprozess steigert sowohl die Akzeptanz der Maßnahme als auch deren Kommunikation. Im Beispiel werden ein virtuelles Modell eines Roboterarms in einer bestehenden Fertigung positioniert und die geplanten Bewegungen des Arms durchgespielt. Mitarbeiter aus der Entwicklung, Produktion und Fertigung diskutieren zusammen die für alle sichtbare virtuelle Planung. Die Interaktion mit dem Modell geschieht dabei völlig natürlich über Blickrichtung, Gesten- und Sprachsteuerung. - Bild: Microsoft

  • Fraunhofer IPA und Fraunhofer IAO bieten im Rahmen des Future Work Labs auch Qualifizierungsmaßnahmen in der sogenannten ‚Future Lern-Welt‘. Hier gibt es zum Beispiel Seminare zum Thema Industrie 4.0. Das Gelernte kann dabei direkt an den Demonstratoren im Future Work Lab angewendet werden. - Bild: Fraunhofer

    Qualifizierung 4.0: Fraunhofer IPA und Fraunhofer IAO bieten im Rahmen des Future Work Labs auch Qualifizierungsmaßnahmen in der sogenannten ‚Future Lern-Welt‘. Hier gibt es zum Beispiel Seminare zum Thema Industrie 4.0. Das Gelernte kann dabei direkt an den Demonstratoren im Future Work Lab angewendet werden. - Bild: Fraunhofer

  • Station 8: Digitalisierte Produktionsplanung Kabellose Arbeitsplätze: Das Fraunhofer IAO hat die sogenannte ‚Wirefree Workstation‘ entwickelt, die komplett ohne Verkabelung auskommt. Laptop, Handy usw. erhalten ihren Strom per Induktion. So bleibt der Arbeitsplatz lean und clean. Docking-Stationen werden beispielsweise nicht mehr benötigt. Dies sorgt für einen flexiblen Übergang von einer Arbeitssituation in eine andere, da hierfür nur das eigene Endgerät mitgebracht werden muss und sämtliche andere Infrastruktur bereit steht. - Bild: Fraunhofer

    Digitalisierte Produktionsplanung - Kabellose Arbeitsplätze: Das Fraunhofer IAO hat die sogenannte ‚Wirefree Workstation‘ entwickelt, die komplett ohne Verkabelung auskommt. Laptop, Handy usw. erhalten ihren Strom per Induktion. So bleibt der Arbeitsplatz lean und clean. Docking-Stationen werden beispielsweise nicht mehr benötigt. Dies sorgt für einen flexiblen Übergang von einer Arbeitssituation in eine andere, da hierfür nur das eigene Endgerät mitgebracht werden muss und sämtliche andere Infrastruktur bereit steht. - Bild: Frauehofer

Das alles kostet natürlich sehr viel mehr Geld als eine herkömmliche Werkbank. Außerdem fallen gewaltige Datenmengen an, die auch irgendwie übertragen werden müssen. Aus Sicht der Unternehmen lohnen sich die Investition und der Aufwand aber. "Allein die Vermeidung von Fehlern", sagt Aßmann. "Das amortisiert sich schnell." Und auch Stillstand in der Produktion könne schnell teuer werden.

Um all das auszuprobieren, brauchen Unternehmen wie Bosch im Prinzip natürlich keine "Arena 2036" - sie haben eigene Entwicklungszentren. Aber dort, so erklärt es Peter Fröschle, können sie eben nicht mal kurz zum Nachbarn gehen, um sich über ein Problem oder eine Idee auszutauschen. "Wie rede ich mit Wettbewerbern?", sei auch so eine Sache, sagt Fröschle, die junge Ingenieure in der "Arena" lernen könnten. Auch dort gibt es Regeln und Verträge, wer mit wem an welchem Projekt arbeitet und wer am Ende wie davon profitiert.

Aber die Hauptbremse Juristerei, wie der "Arena"-Chef es formuliert, die greife eben noch nicht so sehr - auch weil viele Ideen und Projekte noch weit entfernt von der Produktreife seien und man in einem sehr frühen Stadium mit Zeithorizonten von 10 bis 15 Jahren arbeite.

Mit 4 solcher Projekte hat die "Arena" angefangen, inzwischen sind es mehr als 85. Wer mitmachen will, muss natürlich eine Idee mitbringen und Leute abstellen, die - zusammen mit anderen - daran arbeiten. "Nur ein Logo und Geld abgeben", sagt Fröschle, "das geht nicht".