BMW Produktion, Intelligentes Datenmanagement

Die intelligente Analyse realer Sensordaten ermöglicht zum Beispiele die prädiktive Instandhaltung. - Bild: BMW

Bei der Produktion eines Automobils entstehen entlang der gesamten Wertschöpfungskette erhebliche Mengen an Daten. Die BMW Group analysiert in ihrem Digitalisierungsfeld Smart Data Analytics diese Daten zielgerichtet zur Weiterentwicklung ihres Produktionssystems. Für die schnelle und einfache Anbindung der Vielzahl von Sensor- und Prozessdaten aus Produktion und Logistik setzt das Unternehmenauf eine zugriffsgeschützte Intranet-of-Things-Plattform. Smart Data Analytics bietet völlig neue Chancen, die weit über bisherige Analysemöglichkeiten hinausgehen. Die Geschwindigkeit, mit der sich neue Lösungen umsetzen lassen, erhöht sich deutlich. Gleichzeitig verringern sich der technische Aufwand und die Umsetzungskosten dank neuer IoT-Sensorik und Cloud- sowie Big-Data-Technologien.

Christian Patron, Leiter Innovationen und Digitalisierung im Produktionssystem: „Mit Smart Data Analytics setzen wir neue Maßstäbe in unserem Produktionssystem. Die Erfahrung unserer Mitarbeiter kombinieren wir mit den neuen Möglichkeiten, große Datenmengen effizient zu verarbeiten, um daraus präzise Prognosen abzuleiten und vorausschauend Prozesse zu optimieren. Dies beschleunigt die kontinuierliche Verbesserung des Produktionssystems nach den Grundprinzipien einer schlanken Produktion.“

Zielgerichtete Analyse

Besonders großes Potenzial bietet Smart Data Analytics für die Erhöhung der Verfügbarkeit von Produktionsanlagen und -maschinen in den hochautomatisierten Fertigungsbereichen. Eine möglichst präzise Vorhersage, wann ein Ausfall droht, hilft, ungeplante Anlagenstillstände zu reduzieren. Auf Grundlage dieser Prognose können die Mitarbeiter der Instandhaltung einen Wartungseingriff gezielt planen, um dadurch Zeiten des Anlagenstillstands auf ein absolutes Minimum zu begrenzen.

Diese sogenannte prädiktive Instandhaltung wird erst durch die intelligente Analyse einer großen Zahl realer Produktionsdaten, Sensordaten oder Prozessdaten möglich: Deren zielgerichtete Analyse erlaubt es, den optimalen Zeitpunkt für den Wechsel von Verschleißteilen in der Produktion zu bestimmen. Datenbasierte Lösungen ermöglichen die Vorhersage von entstehendem Getriebe- oder Bremsverschleiß von Robotern. An den Schweißzangen signalisieren Sensoren rechtzeitig, wann Fehler oder Qualitätsprobleme auftreten würden. Auch die Zuverlässigkeit elektrischer Antriebe profitiert von einer engmaschigen Sensorüberwachung. Roboter und Steuerungstechnik sind von Haus aus mit der erforderlichen Sensorik ausgerüstet. Mitarbeiter der Instandhaltung ziehen aus diesen Daten Rückschlüsse zu Wartungsbedarfen. Bisherige Auswertungen zur prädiktiven Instandhaltung belegen klar ihren Nutzen für einen zuverlässigen Betrieb.