Kurzpulslaser des ILT

Auf dem Workshop in Aachen werden neue Möglichkeiten für Ultrakurzpuls-Laser diskutiert.

Auf dem 4. UKP-Workshop – Ultrafast Laser Technology im April 2017 in Aachen wird eine neue Generation Prozesstechnik diskutiert, die genau dort ansetzt. Schon in den Neunziger Jahren verglichen Wissenschaftler die Materialbearbeitung mit Nano-, Piko- und Femtosekundenpulsen. Das Ergebnis war überraschend: Material wird mit den ultrakurzen Pulsen so schnell verdampft, dass kaum Wärme im Werkstück bleibt. Dabei sind die Oberflächen besonders glatt, die Schnitte äußerst präzise und der Prozess kaum materialabhängig. Das war lange bekannt, aber erst in den letzten zehn Jahren haben die komplexen Strahlquellen ein Niveau erreicht, welches einen 24/7 Einsatz in der Industrie erlaubt.

Inzwischen werden Systeme mit bis zu 100 Watt in Stückzahlen verkauft. In der Mikromaterialbearbeitung haben sich diese Systeme etabliert, gefragt sind inzwischen mehr Produktivität und stärkere Laser. Die Entwicklung von Strahlquellen im kW-Bereich dafür ist weit fortgeschritten, aber eine einfache Skalierung der Prozesse ist nicht ohne Weiteres möglich - der Flaschenhals ist jetzt die Prozesstechnik. Neue UKP-Strahlquellen bieten mehr Leistung durch Repetitionsraten bis in den MHz-Bereich oder durch höhere Pulsenergien. Für die hohen Repetitionsraten zeigen neue Scannersysteme mit Polygonspiegeln vielversprechende Ergebnisse. Der Spot muss dabei auf dem Werkstück extrem schnell bewegt werden, damit nicht zu viele Pulse überlagert werden und der entstehende Hitzestau die Qualität der Bearbeitung nicht verschlechtert. Scanner bieten eine hohe Flexibilität bei der zu bearbeitenden Kontur, allerdings bewegen sie nur einen einzelnen Spot auf der Werkstückoberfläche. Große Flächen mit wiederkehrenden Mustern lassen sich effizienter mit sogenannten Multistrahloptiken bearbeiten. Eine Multistrahloptik teilt einen einzelnen Laserstrahl in viele Teilstrahlen auf. Das erfordert entsprechend höhere Laserpulsenergien damit jeder Teilstrahl auch noch Material abtragen kann. Bislang erprobt sind hier Mikrooptiken oder diffraktiv-optische Elemente, die aus einem Laserstrahl ein festes Muster erzeugen. Angepasst an die Anwendung kann das eine Linie sein, eine spezielle Kontur oder auch ein Muster aus Hunderten von Einzelstrahlen. Bisher wird die Strahlformung in Multistrahloptiken durch die Beugung des Laserstrahls an festen optischen Strukturen erreicht.

Experten vom Fraunhofer ILT haben jetzt ein System entwickelt, bei dem sich das diffraktive Muster im 50-Hertz-Takt umschalten lässt. Dafür nutzen sie Spatial Light Modulators (SLM), die mit Flüssigkristallen das nötige Beugungsmuster erzeugen. In einem Versuchsaufbau haben die Aachener Forscher das System optimiert und zusammen mit einem Galvanometer-Scanner erprobt. Mit einer passenden Optik werden die Bildfehler korrigiert, sodass auch große Werkstücke mit hoher Präzision bearbeitet werden können. Die programmierbare Vielstrahloptik ermöglicht gerade bei UKP-Lasern mit höheren Pulsenergien eine deutliche Produktivitätssteigerung. Anvisiert sind Anwendungen in der Mikroelektronik oder bei der Texturierung von Oberflächen zum Beispiel im Konsumgüterbereich.

https://www.ilt.fraunhofer.de