Mott-Isolator Sr2IrO4, Max-Planck-Institut, CFEL , Röntgenlaser, flüchtige Atomspins , Röntgentechnik

Dieses Bild veranschaulicht die durch Laserpulse angeregte Manipulation von Spin-Korrelationen im Mott-Isolator Sr2IrO4. Bild: J.M. Harms/MPI für Struktur und Dynamik der Materie

Ein kurzer Lichtblitz kann gewöhnlichen Materialien außergewöhnliche Eigenschaften verleihen, wie die perfekte Effizienz der Supraleitung – und das sogar bei Raumtemperatur. Allerdings sind diese Transformationen berüchtigt dafür, sehr flüchtig zu sein – sie verschwinden bereits nach wenigen Billionstelsekunden wieder. Nun hat ein internationales Forscherteam, an dem auch Wissenschaftler des Max-Planck-Instituts für Struktur und Dynamik der Materie am CFEL in Hamburg beteiligt sind, synchronisierte Infrarot- und Röntgenlaserpulse benutzt, um magnetische Eigenschaften in dieser vielversprechenden Quantenlandschaft gleichzeitig gezielt zu beeinflussen und nachzuweisen, heißt es. Die schnelle, optisch getriebene Schaltung zwischen magnetischen Zuständen, die hier mit beispielloser Präzision untersucht wurde, könnte eines Tages das Lesen und Schreiben von Daten in Computern und anderen digitalen Geräten revolutionieren. „Wir haben eine Methode entwickelt, um lichtinduzierte magnetische Dynamik auf der Zeitskala von Femtosekunden mit bisher unerreichter Detailgenauigkeit sichtbar zu machen“, sagt Mark Dean, Physiker am Brookhaven National Laboratory in den USA und Erstautor der Studie. „Das bringt uns dem Ziel näher, das Rezept zu verfeinern, um diese Materialien auf ultraschnellen Zeitskalen zu manipulieren.“

Diese neuartige Röntgentechnik, die man zeitaufgelöste resonante inelastische Streuung nennt, offenbarte die Dynamik sehr schwacher Spinkorrelationen, die sich in Form von Wellen durch das Material ausbreiten und seine magnetischen Eigenschaften bestimmen. Eine entscheidende Beobachtung ist, dass diese durch einen Infrarotlaserpuls ausgelösten Wellen sich unterschiedlich verhalten, je nachdem ob sie sich in einer zweidimensionalen Ebene oder in einem dreidimensionalen Raum ausbreiten. „Innerhalb einer zweidimensionalen Atomschicht hielt der neuartige Zustand nur für wenige Pikosekunden an”, sagt Yue Cao, Physiker in Brookhaven und Koautor der Studie. „Aber dreidimensionale Korrelationen breiten sich auch über die Grenze einzelner Atomlagen aus und verschwinden erst nach hunderten Pikosekunden – für die hier betrachteten Zeitskalen ist das ein gewaltiger Unterschied. Es ist unglaublich aufregend, an einer neuen Technik Pionierarbeit zu leisten und dann ihren Erfolg zu sehen.“

Um neuartige magnetische und elektronische Eigenschaften zu erzeugen, verwenden Wissenschaftler oft die Technik des sogenannten chemischen Dotierens, welche die atomare Struktur eines Materials durch Einbringen von Fremdatomen verändert. Dadurch kann die Zahl der Elektronen im Material äußerst genau vergrößert oder verringert werden, aber der Prozess führt zu einer dauerhaften Veränderung. „Wir wollten ähnliche Zustände vorübergehend erzeugen, also benutzten wir die Photodotierung“, sagt Dean. Ein Laserpuls liefert die benötigten Photonen, welche die Elektronen- und Spinkonfiguration der Probe ändern – dieselben Spins, die für Phänomene wie Supraleitung verantwortlich gemacht werden. Augenblicke später wechselt das Material wieder in seinen Ursprungszustand.

In der vorliegenden Arbeit verwendeten die Forscher Strontium-Iridium-Oxid (Sr2IrO4), das für seine starken magnetischen Wechselwirkungen bekannt ist. Im ersten Schritt des Experiments traf ein Infrarot-Laserpuls den in Schichten angeordneten Stoff Sr2IrO4 und zerstörte seinen ursprünglichen magnetischen Zustand. Für einen kurzen Moment formten die Elektronen des Materials Spinwellen, die sich kräuselnd durch das Material ausbreiteten und seine elektronischen und magnetischen Eigenschaften drastisch veränderten. Billionstelsekunden später folgte ein Röntgenstrahl und wurde von diesen gerade entstandenen Wellen zurückgestreut. Durch Messung der Impulsänderungen und der Streuwinkel konnten die Forscher die kurzlebigen elektronischen und magnetischen Eigenschaften messen.

Als nächsten Schritt planen die Wissenschaftler, die Anregung mit optischen Pulsen bei noch größeren Wellenlängen, d.h. im mittleren Infrarotbereich, zu erforschen. Dies würde die Atome innerhalb des Materials verschieben, ohne direkt die Elektronen und Spins anzuregen. Diese Arbeit könnte dazu beitragen, die natürliche magnetische Kopplung innerhalb des Materials aufzudecken. Im Umkehrschluss würde dies aufzeigen, wie diese Kopplung am besten aufgebrochen wird, um zwischen verschiedenen elektronischen und magnetischen Zuständen hin- und herzuschalten.