Radarscanner Fraunhofer Angewandte Festkörperphysik IAF

Im unteren silbernen Bereich des Radarscanners befindet sich das Radarmodul, oben ist der Spiegel befestigt. Bild: Fraunhofer IAF

Die zunehmende Vernetzung von Produktionssystemen in ‚intelligent’ organisierten Industrie-4.0-Betrieben treibt die Interaktion zwischen Mensch und Maschine voran. Der Trend geht hin zu Industrierobotern, die ohne Schutzabsperrung betrieben werden. Voraussetzung für die Zusammenarbeit: Der Mensch darf zu keinem Zeitpunkt gefährdet sein. Hier liegt die Achillesferse der Mensch-Roboter-Kollaboration: Laserscanner überwachen den Gefahrenbereich und stoppen die Maschine, sobald ein Mensch diesen betritt. Doch unter wechselnden Lichtbedingungen erzielen die optischen Sensoren nicht immer zuverlässige Ergebnisse. Auch funktionieren sie nicht, wenn Rauch, Staub oder Nebel die Sicht behindern.

Forscher des Fraunhofer-Instituts für Angewandte Festkörperphysik IAF haben einen kompakten, modular aufgebauten 360-Grad-Radarscanner entwickelt, der optischen Sensoren in diesen Aspekten überlegen ist, heißt es. Damit ist er für Sicherheitsanwendungen in der Mensch-Maschine-Kollaboration prädestiniert. Das Radar arbeitet mit Millimeterwellen, die von den beobachteten Objekten, also etwa von Personen, reflektiert werden. Sende- und Empfangssignal werden mithilfe numerischer Algorithmen verarbeitet und ausgewertet. Anhand der Berechnung lassen sich sowohl Entfernung und Position, als auch die Geschwindigkeit der Objekte ermitteln. Setzt man mehrere Radare ein, lässt sich sogar die Lage im Raum bestimmen, und die Richtung, in der sie sich bewegen.

„Unser Radar fokussiert nicht auf einen Punkt, sondern sendet die Millimeterwellen keulenförmig aus. Anders als beim Laserscanner werden die Signale selbst dann reflektiert, wenn optische Sichtbehinderungen bestehen“, sagt Christian Zech, Wissenschaftler am IAF. Der Laserscanner misst Abstände und Positionen nur dann korrekt, wenn das Ziel – also der Mensch – optisch unverdeckt arbeitet. Da das 360-Grad-Radar des IAF auch optisch nicht transparente Materialien durchstrahlt, erkennt es Mitarbeiter selbst dann, wenn sie sich etwa hinter Kisten, Pappwänden oder anderen Hindernissen befinden.

Bisherige Millimeterwellen-Radarsysteme – basierend auf Hohlleitern – sind teuer, groß und schwer, so das IAF. Der Scanner des IAF hat einen Durchmesser von nur 20 cm und ist 70 cm hoch. Im Sockel des Geräts befindet sich das Hochfrequenzmodul mit Indiumgalliumarsenid-Halbleitertechnik, das nicht größer als eine Zigarettenschachtel ist. „Heutzutage werden Millimeteranwendungen von Hohlleitern dominiert, die in der Herstellung extrem teuer sind. Durch eine kostengünstige Aufbau- und Verbindungstechnik und eigens entwickelten Leiterplatten konnten wir die Hohlleiter ersetzen und das Hochfrequenzmodul auf einer 78 x 42 x 28 mm großen Platine integrieren“, so Zech weiter. Das Hochfrequenzmodul, Herzstück des Radarscanners, haben die IAF-Forscher in enger Zusammenarbeit mit den Fraunhofer-Instituten für Zuverlässigkeit und Mikrointegration IZM und für Produktionstechnik und Automatisierung IPA entwickelt.

Das komplette System umfasst neben einem Signalprozessor eine Sende- und Empfangsantenne mit einer dielektrischen, also elektrisch nicht leitenden Linse. Ein im 45-Grad-Winkel angebrachter, sich drehender Spiegel lenkt die Millimeterwellen ab, leitet sie weiter und erfasst den kompletten Raum. Durch den Einsatz der dielektrischen Antenne ist der Öffnungswinkel frei einstellbar, sodass sowohl kleine, zentimetergroße Objekte im Nahbereich als auch große, weit entfernte Flächen erfasst werden können. Die Reichweite des Systems ist abhängig von der Anwendung und kann bis zu mehreren hundert Metern betragen. Der Scanner besitzt eine Ethernet-Schnittstelle und ist daher für Industrie 4.0-Netzwerke gut vorbereitet.

Um die Messgenauigkeit und Zuverlässigkeit des 360-Grad-Radars zu testen, führten die IAF-Forscher hunderte Messungen im Labor durch. Die maximale Abweichung vom Mittelwert liegt bei unter 1 µm, die Standardabweichung bei 0,3 µm.