Klaus Bauer von Trumpf

Klaus Bauer von Trumpf beim Deutschen Maschinenbau-Gipfel 2019: Probieren, scheitern, triumphieren. - Bild: Anna Mc Master

Immerhin zwei Drittel der Teilnehmer gaben in einer Saalumfrage auf dem Maschinenbau-Gipfel an, ein KI-basiertes Produkt oder eine Dienstleistung am Markt platzieren zu wollen. Die Diskussionen  auf dem Gipfeltreffen zeigten zwar, dass Europa beim Thema KI eigentlich abgehängt ist. Das gilt aber nicht unbedingt für Anwendungen der Künstlichen Intelligenz im Industrieumfeld. Für Dr. Ansgar Kriwet, Vorstand Sales bei Festo, gibt es einen guten Grund, warum sich KI im Maschinenbau nicht so schnell durchsetzt wie im Consumer-Bereich, siehe Alexa und Sprachübersetzer.

Denn während im Consumer-Umfeld unstrukturiert Massendaten mit Deep Learning durchsucht werden, sei das im Produktionsfeld anders: Jede Maschine sei unterschiedlich und damit werde es schwierig, Massendaten in ausreichender Menge einzusammeln, um KI-Algorithmen zu trainieren.

Dr. Ansgar Kriwet
"Wir brauchen eine andere Art von KI, eine, die menschliche Fähigkeiten mit einbezieht", erklärte Dr. A. Kriwet von Festo. Der Manager sieht gute Chancen für Deutschland in diesem Teilsegment von KI global führend zu werden. KI für die Industrie müsse strukturierte Datenströme auswerten und dann daraus Schlüsse ziehen. - Bild: Karoline Kopp

Warum sich bei Massendaten im Trüben fischen nicht lohnt

„Wir Ingenieure verstehen, wie unsere Maschinen funktionieren, wie Aktoren und Sensoren zusammenarbeiten, wir kennen die Wirkmechanismen“, stellte Kriwet fest. Wenn man einfach nur Produktionsdaten in die Cloud streame und dann schaue, was die KI herausfindet, könne man nicht überrascht sein, dass dabei wenig herauskommt. „Wir brauchen eine andere Art von KI für die Industrie, die das Wirkwissen von Menschen mit einbezieht in die Auswertung von Massendaten. Wir sollten uns darauf konzentrieren, solche KI gemeinsam mit den Forschungsinstituten weiterzuentwickeln – das ist eine Chance auf dem Weltmarkt“, konstatiert der Festo-Vorstand.

Zwar meinen einige Beratungsunternehmen, dass es KI bereits schon von der Stange gäbe und Unternehmen einfach loslegen können. Die Praxis zeigt jedoch, dass ohne Datenspezialisten und vor allem ohne Fach-Know-how im Produktionsumfeld keine Schätze zu heben sind. Das bestätigt auch die Erfahrung, die Festo gemacht hat, als es um die Optimierung einer VUVG-Anlage für Kompaktventile ging. Die Idee: Wenn man schon in schleichenden Prozessparametern erkennen könnte, bei welchem Prozess Probleme entstehen, ließe sich Ausschuss reduzieren und die Verfügbarkeit der Anlage erhöhen. „Wir haben den klassischen Ansatz verfolgt, haben alle Daten aus Sensoren mitgeschrieben und dann versucht, mit KI Abhängigkeiten und Korrelationen zu erkennen. Das war ein kompletter Fehlschlag“, berichtet Kriwet. Man sei nicht über 50 Prozent Wahrscheinlichkeit hinausgekommen.

Warum bei KI in der Produktion das Fachwissen zählt

Dann habe man noch einmal neu angefangen. „Wir haben uns die Montagepläne des Ventils angeschaut, die Montageplaner, den Konstrukteur und die Anlagenführer dazu geholt“, erinnerte sich Kriwet. Im nächsten Schritt wurden die einzelnen Aspekte angeschaut und mit einzelnen Maschinenbestandteilen, Sensoren und Aktoren verbunden. Zunächst wurden jenseits von KI Wirkketten aufgestellt, Abhängigkeiten gewichtet und ein Abhängigkeitsgraph erstellt.

„Erst dann haben wir die aufgenommenen Daten genutzt, um mit KI den Abhängigkeitsfaktor zu gewichten“, so der Festo-Vorstand. Dabei ging es um Fragen wie: Welche Größe hat welchen Einfluss auf die Qualität? Wie stark wirkt das Andrehmoment einer Schraube auf die Produktqualität? Jeden einzelnen Faktor könne man auch allein anschauen, für Korrelation aller Faktoren sei aber KI notwendig. Dafür nutzte man eine klassische Machine-Learning-Methode. In den 23 Sekunden, in denen ein Ventil montiert wird, wird eine Voraussage über dessen Qualität getroffen und mit möglichen Maßnahmen korrektiv eingewirkt. So konnte mit dieser Anlage eine Effizienzverbesserung von 15 Prozent erreicht werden.

  • Maschinenbau-Gipfel

    Bundeskanzlerin Angela Merkel zu Gast beim 11. Deutschen Maschinenbau-Gipfel zwischen VDMA-Präsident Carl Martin Welcker (rechts v. Merkel) und VDMA-Vizepräsident Karl Haeusgen. - Bild: Anna McMaster

  • Maschinenbau-Gipfel

    Merkel kritisierte unter anderem die internationalen Handelsstreitigkeiten und deren Auswirkungen auf traditionelle Institutionen wie die WTO: „Bei aller Kritik an der nicht perfekten Funktionsweise all dieser multilateralen Organisationen, ist es sehr schnell möglich, solche Institutionen zu zerschlagen oder sie handlungsunfähig zu machen – wie wir es vielleicht bei der Welthandelsorganisation sehen, weil die Schiedsgerichte nicht mehr tagen“, stellte die Kanzlerin fest. - Bild: Anna McMaster

  • Maschinenbau-Gipfel

    „Die Party ist noch nicht vorbei, aber man sollte nahe am Ausgang tanzen“, beschrieb der VDMA-Präsident Carl Martin Welcker die aktuelle Lage im deutschen Maschinenbau. - Bild: Anna McMaster

  • Maschinenbau-Gipfel

    Bundeskanzlerin Angela Merkel mit VDMA-Vizepräsident Henrik Schunk, VDMA-Präsident Carl Martin Welcker, VDMA-Vizepräsident Karl Haeusgen und VDMA-Hauptgeschäftsführer Thilo Brodtmann.(v.l.n.r.) - Bild: Anna McMaster

  • Maschinenbau-Gipfel

    VDMA-Hauptgeschäftsführer Thilo Brodtmann, VDMA-Präsident Carl Martin Welcker und Produktion-Chefredakteur Claus Wilk (v.l.n.r.) beim Deutschen Maschinenbau-Gipfel 2019. - Bild: Karoline Kopp

  • Maschinenbau-Gipfel Angela Merkel

    Bundeskanzlerin Angela Merkel im Gespräch mit VDMA-Präsident Carl Martin Welcker. - Bild: Anna McMaster

  • Maschinenbau-Gipfel Moderatorin Ursula Heller

    Moderatorin Ursula Heller führte im Plenum und der Fokus-Konferenz Digitalisierung durchs Programm. - Bild: Anna McMaster

  • Maschinenbau-Gipfel

    Ralf Schubert, Geschäftsführender Gesellschafter der Gerhard Schubert GmbH, referierte im Konferenzstrang Digitalisierung über die Fabrik der Zukunft. - Bild: Anna McMaster

  • Maschinenbau-Gipfel

    "Die europäische Industriepolitik will komplette Wertschöpfungsketten zu europäischen Champions im globalen Wettbewerb machen - nicht einzelne Großunternehmen", konstatierte im Märkte-Strang der Konferenz Dr. Mark Niklas, Head of Unit Innovation Policy and Investment for Growth bei der Europäischen Kommission. - Bild: Anna McMaster

  • Maschinenbau-Gipfel

    Blockchain ist nicht nur ein Hype, sondern eine große Chance für den Maschinen- und Anlagenbau, erklärte Martin Holland aus der Geschäftsleitung von Prostep im Strang Digitalisierung. - Bild: Anna McMaster

  • Maschinenbau-Gipfel

    Trendtalk im Konferenzstrang Mobilität: Thema Antriebe im Wettbewerb. Mit dabei waren Manfred Stefener von Freudenberg, Matthias Machnig von InnoEnergy und Rudolf Maier von Bosch (v.l.n.r.). - Bild: Anna McMaster

  • Maschinenbau-Gipfel Fokus-Konferenz Mobilität

    "Zur Erreichung des Klimaziele 2030 sind regenerative Kraftstoffe unverzichtbar und eine ganzheitliche Betrachtung der Energiewende über alle Sektoren notwendig", sagt Rudolf Maier, Senior Expert Geschäftsbereich Powertrain Solutions bei Bosch in der Fokus-Konferenz Mobilität. - Bild: Anna McMaster

  • Maschinenbau-Gipfel Fokus-Konferenz Digitalisierung

    5G und Campusnetze spielen im Zuge der Digitalisierung eine größere Rolle. Was das bedeutet diskutieren Ursula Heller (Moderation), Guido Beckmann von Beckhoff Automation, Herbert Wegmann von Siemens, Andrea Kraus und Norman Franchi von Vodafone (v.l.n.r.). - Bild: Anna McMaster

  • Maschinenbau-Gipfel Fokus-Konferenz Märkte

    In der Fokus-Konferenz zum Thema Märkte sprach Gisela Eickhoff von der Harting Stiftung über Menschenrechte und wie wichtig es ist, dass die Unternehmen selbst sich für diese einsetzen. - Bild: Anna McMaster

  • Maschinenbau-Gipfel Matthias-Machnig InnoEnergy

    "Die nächsten zehn Jahre werden zu den tiefsten Veränderungsprozessen seit der Industrialisierung führen", so Matthias Machnig von InnoEnergy auf dem Maschinenbau-Gipfel. "Zwei Kernthemen und Schlüsseltreiber sind dafür relevant: Digitalisierung und Elektrifizierung." - Bild: Anna McMaster

  • Klaus Bauer, Head of R&D Basic Technology bei Trumpf

    Best Practice von Trumpf: Klaus Bauer, Head of R&D Basic Technology, erklärte wie Trumpf mit dem Einsatz von KI und neuronalen Netzen die Produktion im Bereich Lasertechnik verbessert. - Bild: Anna Mc Master

  • Maschinenbau-Gipfel Peter Gutzmer, Schaeffler

    Peter Gutzmer von Schaeffler: "Es geht in Zukunft sowohl um nachhaltige Mobilität als auch um Mobilitätssicherheit im Sinne von Bereitstellung." - Bild: Anna McMaster

  • Michael Hanke, Detecon

    Michael Hanke von Detecon erläutert in der Fokus-Konferenz Mobilität, wie wichtig die Zusammenarbeit von Maschinenbau und Autoindustrie ist: „Der Sektor Mobilität wird weiter wachsen. Das ist eine Chance und Herausforderung für die enge Verflechtung von Automobilindustrie und Maschinenbau.“ - Bild: Anna McMaster

  • Festo Dr. A. Kriwet

    "Wir brauchen eine andere Art von KI, eine, die menschliche Fähigkeiten mit einbezieht", erklärte Dr. A. Kriwet von Festo. Der Manager sieht gute Chancen für Deutschland in diesem Teilsegment von KI global führend zu werden. KI für die Industrie müsse strukturierte Datenströme auswerten und dann daraus Schlüsse ziehen. - Bild: Karoline Kopp

  • Frank Riemersperger, Deutschlandchef von Accenture

    Frank Riemersperger, Deutschlandchef von Accenture, wies unter anderem darauf hin, dass die bisherigen Investitionen in Cloud-Technologie in Europa nicht ausreichen, um mit Highscale-Anbietern aus den USA und China mitzuhalten. - Bild: Anna McMaster

  • Dr. Ralph Wiechers (VDMA), Dr. Stefan Profit (Bundesministerium für Wirtschaft und Energie), Dr. Klaus-Jürgen Gern vom Institut für Weltwrtschaft Kiel, Dr. Manuel Kallweit (VDA), Prof. Michael Grömling (Institut der deutschen Wirtschaft).

    "Noch haben wir keine Rezession, aber das Risiko besteht." Talkrunde zum brandaktuellen Thema Konjunkturkrise: Dr. Ralph Wiechers (VDMA), Dr. Stefan Profit (Bundesministerium für Wirtschaft und Energie), Dr. Klaus-Jürgen Gern vom Institut für Weltwrtschaft Kiel, Dr. Manuel Kallweit (VDA), Prof. Michael Grömling (Institut der deutschen Wirtschaft). (v.l.n.r.) - Bild: Anna McMaster

Doch es gibt weitere Einsatzszenarien für KI. „Flexibilität wird in Montageprozessen immer wichtiger“, sagte Kriwet. Roboter müssten sich auf immer neue zu greifende Teile einstellen. Wenn aus dem Ansehen des Teils mit KI-Bilderkennung abzuleiten ist, welcher Greifertyp richtig ist und wo der Zugriffspunkt liegen muss, wäre ein großer Fortschritt erreicht, konstatierte Ansgar Kriwet. Künftig will man vortrainierte neuronale Netze mitliefern, damit Kunden ihre Anlage ohne Programmierung umrüsten können. Auch Predictive Maintenance habe große Potenziale. So könne im Automobilrohbau bei Schweißrobotern zu 90 Prozent der Ausfall einer Schweißzange schon zwei Wochen im Vorfeld  vorhergesagt werden. Auch diese Technik soll laut Kriwet künftig Teil des Produktangebots sein.

Warum eine neue Fehlerkultur wichtig ist

In dieselbe Kerbe schlug auch Klaus Bauer, Head of R&D Basic Technology bei Trumpf Werkzeugmaschinen. Er sprach auf dem Gipfeltreffen im Konferenzstrang „Digitalisierung“ darüber, wie sich KI in der Produktion nutzen lässt. Auch Bauer berichtete zunächst von Fehlern, die auf dem Weg zum Einsatz von Künstlicher Intelligenz offenbar naturgemäß dazugehören. Die Praxiserfahrungen zeigen auch: Eine neue Fehlerkultur ist nötig, denn gerade die Misserfolge gehören untrennbar zum Vorankommen.

Das Ziel bei Trumpf: Mit einer Laserschneide-Maschine unterschiedlichste Materialen zu bearbeiten und zu schneiden, dabei aber so flexibel zu sein, dass so gut wie keine Umrüstung nötig ist. In den letzten 30 Jahren habe man an Stellschrauben wie Beschleunigung, oder Abständen zwischen Düsen und Blech gedreht. Man habe  aber nicht alles nutzen können, was in einer Maschine drinsteckt, erzählte Bauer.  

Jetzt schaue man mit einer Kamera in die Maschine, weil  man mit diesem Bild das Prozesslicht  erfassen und die wichtige Düsenmittigkeit und Schmelzkurve erkennen könne. Durch die Nutzung von KI und statistischen Methoden werden mehr Korrelationsgrößen genutzt und es entstehen andere Freiheitsgrade. Die Maschine arbeitet auf Basis dieser Methoden und regelt selbsttätig Faktoren, um ein Optimum aus Qualität und Geschwindigkeit zu erreichen.

Welche Einsatzgebiete es für KI in der Produktion gibt

Viele Dinge wurden im Trial-and-Error-Verfahren entwickelt. So wollte man gern ein Loch unter dem Laser, damit ausgeschnittene Blechteile nach unten herausfallen. Das war in der Vergangenheit nicht möglich. Dafür baute man eine ganz neuartige Maschine mit fliegendem Loch unter dem Laserstrahl, genannt Smart Gate. „Dieser Schneideprozess hat über 200 Parameter und man bekommt ihn so nicht beschrieben“, berichtete Bauer. Deshalb habe man eine statistische Methode hinzugenommen, wie bei Festo kombiniert mit dem vorhandenen tiefen Fachwissen der Experten.

„Wir berechnen die Flächen, nehmen eine Schneidstrategie, die in der Vergangenheit optimal war, und nutzen neuronale Netze, damit Teile nicht kippen oder verklemmen. Das Ergebnis funktioniert wirklich“, berichtet Bauer begeistert. Dafür muss man einige Millionen Geometrien abhandeln, da diese frei wählbar sind.

Weil das Konzept überzeugt hat, nutzte man KI gleich noch für ein anderes Problem. So habe in der Vergangenheit das Ausschleusen großer Teile nicht funktioniert. Das geschnittene Blech wurde auf einen Haufen geworfen und der Kunde musste teure Manpower für aufwendige Sortierprozesse einsetzen.

Deshalb baute man eine Konstruktion, bei der Stäbe von unten gegen das ausgeschnittene Teil drücken und es oben von einer Sauggruppe angezogen wird. Das Ergebnis: „Wenn es geht, ist es supergut, aber manchmal funktioniert es nicht“, sagte Klaus Bauer mit einem Augenzwinkern. Deshalb nimmt Trumpf jetzt KI-Wissen mit in den Prozess, bei dem berechnet wird, wo man bei welcher Art von Geometrie welche Stützen positionieren muss.

"Wir sind mehr Tüftler als die Chinesen"

Doch bei Trumpf hat man sich auch mit übergreifenden Szenarien befasst. „Die Smart Factory hat viele Maschinen, oft gibt es kleine Aufträge, viele kommen niemals wieder. Es geht dabei darum, ein Optimum zu finden, um Teile zu produzieren“, so Bauer.

Durch die Daten im Hintergrund habe man die Produktion von knapp 200 Stück auf über 500 Stück pro Tag steigern können, auf derselben Maschine. „In der Vergangenheit haben wir einzelne Maschinen optimiert. Bei der Verkettung hingegen haben wir vorgelagerte Prozesse in der Logistik optimiert und 200 bis 300 Prozent herausgeholt“, erklärte Klaus Bauer. Und noch eine Erkenntnis von Bauer ist wichtig: Nur mit „guten“ Daten funktionieren statistische Verfahren nicht, es braucht auch Daten, die Fehler und Probleme abbilden.

Eine Hürde für die Umsetzung von KI-Szenarien ist fraglos vor allem selbst für die großen Mittelständler der Fachkräftemangel. Auf die Frage, wie Deutschland im Vergleich mit China bei KI im Produktionsumfeld dasteht, meinte der Trumpf-Spezialist:„Wir machen uns Gedanken, wie wir unsere Werte schützen und geben nicht alle Daten raus. Wir sind universeller und sind mehr Tüftler. Das machen wir noch besser als die Chinesen.  Aber lockerlassen dürfen wir net!“.

Wissen, was die Industrie bewegt!

Alles zu Industrie 4.0, Smart Manufacturing und die ganze Welt der Technik.

Newsletter gratis bestellen!